Abstract

A numerical solution to the integral equation for radiative transfer by resonance reradiation in an isothermal spherical atmosphere is described. The method presented is 100 times more efficient than earlier spherical radiative transfer models. The new model can accommodate density variations in the full three dimensional space and includes effects due to the presence of pure absorbers. Complete frequency redistribution is assumed for photon scattering. Applications of this model to the problem of solar photons scattered by atomic hydrogen in the atmospheres of Venus, Earth and Mars are described, and limb and disk profiles, as well as equivalent mean disk intensities for Venus, Earth and Mars, are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.