Abstract
During the process of biological treatment, most microorganisms are encapsulated in extracellular polymeric substances (EPS), which protect the cell from adverse environments and aid in microbial attachment. Microorganisms utilize extracellular electron transfer (EET) for energy and information interchange with other cells and the outside environment. Understanding the role of steric EPS in EET is critical for studying microbiology and utilizing microorganisms in biogeochemical processes, pollutant transformation, and bioenergy generation. However, the current study shows that understanding the roles of EPS in the EET processes still needs a great deal of research. In view of recent research, this work aims to systematically summarize the production and functional group composition of microbial EPS. Additionally, EET pathways and the role of EPS in EET processes are detailed. Then factors impacting EET processes in EPS are then discussed, with a focus on the spatial structure and composition of EPS, conductive materials and environmental pollution, including antibiotics, pH and minerals. Finally, strategies to enhance EET, as well as current challenges and future prospects are outlined in detail. This review offers novel insights into the roles of EPS in biological electron transport and the application of microorganisms in pollutant transformation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have