Abstract
As areal density in disk drive technology is marching towards the Tbit∕in.2 mark, the slider-to-disk spacing will be required to be within only a few nanometers. Coupled with very high slider velocities (>40m∕s), this leads to extremely high shear stresses on the nanometer-thin lubricant film at the disk surface. As a result, the lubricant film tends to exhibit local redistribution on a micrometer lateral level, decreasing the overall clearance and impacting the integrity of the interface. This paper describes a different approach to functionalized lubricant, where in addition to functional groups placed at the end of the chain, additional attachment moieties are introduced within the main polymer chain. The benefits of this approach is twofold: it increases adhesive interaction with the disk surface, therefore increasing the effective surface viscosity, while at the same time “tying” down the free backbone length for increased clearance. Fabrication, characterization, and performance data obtained on actual magnetic disks will be described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.