Abstract

Heat assisted magnetic recording (HAMR) is a promising technique to overcome the superparamagnetic limit to further increase the areal recording density of hard disk drives. However, HAMR brings about serious problems to the slider-disk interface, such as lubricant depletion on disk surface caused by laser heating. It is proposed to overcome the lubricant depletion problem by using vapor lubrication. The lubricant film formation process on disk surface in vapor lubrication is studied theoretically based on fundamental adsorption and desorption theories. The controlling parameters of lubricant film thickness and film formation time are identified. It is found that the lubricant film thickness is controlled mainly by lubricant vapor pressure and molecular weight. The film formation time can be shortened by using low molecular weight lubricant and high temperature lubricant vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.