Abstract

The Stewart manipulator has characteristics of low natural frequency, high cost and large size which make it difficult to obtain optimum performance with high dynamic response. The lowest natural frequency in the total workspace and average of six frequencies at home configuration of Stewart manipulator are introduced as indices to evaluate dynamic stability. Multi-criteria optimal design based on genetic algorithm (GA) was presented synthetically considering the workspace requirement, lowest natural frequency, average frequency and global dimensionally homogeneous Jacobian matrix condition number. An optimal result was obtained through standard GA using penalty function and the Pareto-optimal set was also obtained through parallel selection method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call