Abstract
Previous animal models have demonstrated altered gut microbiome after mild traumatic injury; however, the impact of injury severity and critical illness is unknown. We hypothesized that a rodent model of severe multicompartmental injuries and chronic stress would demonstrate microbiome alterations toward a "pathobiome" characterized by an overabundance of pathogenic organisms, which would persist 1 week after injury. Male Sprague-Dawley rats (n = 8 per group) were subjected to either multiple injuries (PT) (lung contusion, hemorrhagic shock, cecectomy, and bifemoral pseudofractures), PT plus daily chronic restraint stress for 2 hours (PT/CS), or naive controls. Fecal microbiome was measured on days 0, 3, and 7 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology 2 bioinformatics analysis. Microbial α diversity was assessed using Chao1 and Shannon indices, and β diversity with principle coordinate analysis. Intestinal permeability was evaluated by plasma occludin; ileum and descending colon tissues were reviewed for injury. Analyses were performed in GraphPad (GraphPad Software, La Jolla, CA) and R (R Foundation for Statistical Computing, Vienna, Austria), with significance defined as p < 0.05. There were significant alterations in β diversity at day 3 and between all groups. By day 3, both PT and PT/CS demonstrated significantly depleted bacterial diversity (Chao1) ( p = 0.01 and p = 0.001, respectively) versus naive, which persisted up to day 7 in PT/CS only ( p = 0.001). Anaerostipes and Rothia dominated PT and Lactobacillus bloomed in PT/CS cohorts by day 7. Plasma occludin was significantly elevated in PT/CS compared with naive ( p = 0.04), and descending colon of both PT and PT/CS showed significantly higher injury compared with naive ( p = 0.005, p = 0.006). Multiple injuries with and without chronic stress induces significant alterations in microbiome diversity and composition within 3 days; these changes are more prominent and persist for 1 week postinjury with stress. This rapid and persistent transition to a "pathobiome" phenotype represents a critical phenomenon that may influence outcomes after severe trauma and critical illness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.