Abstract

Semiconductor nanostructures have interesting electro-optic properties due to quantum confinement of electrons, strong exciton binding energies, and the possibility to tailor the bandgap and radiative emission rates. An electric field normal to the quantum well, for example, shifts the absorption edge to lower energies (red-shift) and increases the refractive index below the absorption edge allowing to control the intensity of a light beam through electroabsorption. Such nanostructures can be conveniently used for the direct modulation of light, since they show much larger electro-optic effects than bulk semiconductors. Moreover, the optical properties of semiconductor nanostructures can be controlled by an electric field due to different emission rates from radiative centers in different charge states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.