Abstract

A multicode approach, based on the simultaneous use of zero-dimensional, one-dimensional, and three-dimensional models, has been developed and tested, and is here applied to predict the thermodynamic and fluid dynamic phenomena that characterize the unsteady gas flow propagation along the exhaust system of a turbocharged four-cylinder engine. The investigation is carried out by applying each model in a different region of the geometry, allowing to obtain detailed information of the flow behavior in complex elements, such as junctions, avoiding the significant limitations that a one-dimensional scheme always introduces, as well as fast processing typical of one-dimensional and zero-dimensional models, devoted to the analysis of ducts and volumes. The effect of the influence of different configurations of the exhaust system on the engine performance is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call