Abstract
The high-resolution image is the prerequisite of information acquisition and precise analysis. Multi-frame super-resolution images reconstruction technologies are able to address many image degraded issues (caused by external shooting environment), such as detail information lost, blurred edges, and so forth. According to the nanoscale memristor, a Multi-channel Memristive Pulse Coupled Neural Network (MMPCNN) model is proposed. This model is able to simulate the adaptive-variable linking coefficient in pulse coupled neural network. Meanwhile, the proposed network is applied to the multi-frame super resolution reconstruction for fusing the registered low resolution images. Furthermore, the sparse coding based super resolution method is performed to improve the original high-resolution image. Finally, a series of computer experiments and the relevant subjective/objective analysis jointly illustrate the validity and effectiveness of the entire scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.