Abstract

We propose and experimentally realize a class of quasi-one-dimensional topological lattices whose unit cells are constructed by coupled multiple identical resonators, with uniform hopping and inversion symmetry. In the presence of coupling-path-induced effective zero hopping within the unit cells, the systems are characterized by complete multimerization with degenerate −1 energy edge states for open boundary condition. Su–Schrieffer–Heeger subspaces with fully dimerized limits corresponding to pairs of nontrivial flat bands are derived from the Hilbert spaces. In particular, topological bound states in the continuum (BICs) are inherently present in even multimer chains, manifested by embedding the topological bound states into a continuous band assured by bulk-boundary correspondence. Moreover, we experimentally demonstrate the degenerate topological edge states and topological BICs in radio-frequency circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.