Abstract

This paper presents a multi-channel active noise control algorithm that is designed to reject periodic signals of unknown frequency. It is based on a so-called indirect approach, where the frequency of the disturbance is estimated in real time, and the estimate is used in a disturbance rejection scheme designed for a known frequency. Improvements over an earlier algorithm include an extension to multi-channel systems, a better frequency estimation algorithm, and a thorough experimental evaluation. For disturbance rejection, a so-called inverse G algorithm is proposed and its properties are compared through analysis and experiments to those of a gradient algorithm. A new frequency estimator is also considered that is simple and flexible in design, and is able to use multiple harmonics or multiple signals in order to estimate the fundamental frequency of the noise source. In this manner, the algorithm maintains tracking of the fundamental frequency despite significant changes in signal characteristics. The ability of the indirect approach to reject periodic noise with fixed or time-varying frequency and amplitudes is demonstrated in active noise control experiments. The algorithm may also be useful in other control applications where periodic disturbances of unknown frequency must be rejected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call