Abstract

BackgroundAnoikis and epithelial-mesenchymal transition (EMT) are pivotal in the distant metastasis of lung adenocarcinoma (LUAD). A detailed understanding of their interplay and the identification of key genes is vital for effective therapeutic strategies against LUAD metastasis.MethodsKey prognostic genes related to anoikis and EMT were identified through univariate Cox regression analysis. We utilized ten machine learning algorithms to develop the Anoikis and EMT-Related Optimal Model (AEOM). The TCGA-LUAD dataset served as the training cohort, while six additional international multicenter LUAD datasets were employed as validation cohorts. The average concordance index (c-index) was used to evaluate model performance and identify the most effective model. Subsequent multi-omics analyses were conducted to explore differences in pathway enrichment, immune infiltration, and mutation landscapes between high and low AEOM groups. Experimental validation demonstrated that RHPN2, a key biomarker within the model, acts as an oncogene facilitating LUAD progression.ResultsThe AEOM displayed superior prognostic predictive performance for LUAD patients, outperforming numerous previously published LUAD signatures. Biologically, the AEOM was notably associated with immune features; the high AEOM group exhibited decreased immune activity and a tendency towards immune-cold tumors, as well as a higher tumor mutational burden (TMB). Subgroup analysis revealed that the low AEOM + high TMB group had the most favorable prognosis. The high AEOM group was primarily enriched in cell cycle-related pathways, promoting cancer cell proliferation. RHPN2, a crucial gene within the AEOM (correlation = 0.85, P < 0.05), was linked to poorer prognosis in LUAD patients with elevated RHPN2 expression. Further in vitro experiments showed that RHPN2 modulates LUAD cell proliferation and invasion.ConclusionThe AEOM provides a robust prognostic model for LUAD, uncovering critical immune and biological pathways, with RHPN2 identified as a key oncogenic driver. These findings offer valuable insights for targeted therapies and enhanced patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.