Abstract

Simple SummaryLung cancer is the most dreadful cancer type and has the worst cancer-related clinical outcomes. This study used specimens from the in-house lung cancer cohort and public cohort to verify the roles of downregulated ADAMTS1, a protease remodeling extracellular matrix, to facilitate cancer promotion and progress. Based on the clinical specimens, cell and animal study with the aid of the public databases, we concluded that downregulated expression of ADAMTS1 might promote tumor progression and metastasis and modify the tumor microenvironment in lung cancer. Further investigation would be required for its application in treating lung cancer.Lung adenocarcinoma (LUAD) still holds the most dreadful clinical outcomes worldwide. Despite advanced treatment strategies, there are still some unmet needs. Next-generation sequencing of large-scale cancer genomics discovery projects combined with bioinformatics provides the opportunity to take a step forward in meeting clinical conditions. Based on in-house and The Cancer Genome Atlas (TCGA) cohorts, the results showed decreased levels of ADAMTS1 conferred poor survival compared with normal parts. Gene set enrichment analyses (GSEA) indicated the negative correlation between ADAMTS1 and the potential roles of epithelial–mesenchymal transition (EMT), metastasis, and poor prognosis in LUAD patients. With the knockdown of ADAMTS1, A549 lung cancer cells exhibited more aggressive behaviors such as EMT and increased migration, resulting in cancer metastasis in a mouse model. The pathway interaction network disclosed the linkage of downregulated α2-macroglobulin (A2M), which regulates EMT and metastasis. Furthermore, immune components analysis indicated a positive relationship between ADAMTS1 and the infiltrating levels of multiple immune cells, especially anticancer CD4+ T cells in LUAD. Notably, ADAMTS1 expression was also inversely correlated with the accumulation of immunosuppressive myeloid-derived suppressor cells and regulatory T cells, implying the downregulated ADAMTS1 mediated immune adjustment to fit the tumor survival disadvantages in LUAD patients. In conclusion, our study indicates that ADAMTS1 interacts with A2M in regulating EMT and metastasis in LUAD. Additionally, ADAMTS1 contributes to poor prognosis and immune infiltration in LUAD patients

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call