Abstract

We develop statistical enumeration methods for self-avoiding walks using a powerful sampling technique called the multicanonical Monte Carlo method. Using these methods, we estimate the numbers of the two dimensional N-step self-avoiding walks up to N = 256 with statistical errors. The developed methods are based on statistical mechanical models of paths which include self-avoiding walks. The criterion for selecting a suitable model for enumerating self-avoiding walks is whether or not the configuration space of the model includes a set for which the number of the elements can be exactly counted. We call this set a scale fixing set. We selected the following two models which satisfy the criterion: the Gō model for lattice proteins and the Domb-Joyce model for generalized random walks. There is a contrast between these two models in the structures of the configuration space. The configuration space of the Gō model is defined as the universal set of self-avoiding walks, and the set of the ground state conformation provides a scale fixing set. On the other hand, the configuration space of the Domb-Joyce model is defined as the universal set of random walks which can be used as a scale fixing set, and the set of the ground state conformation is the same as the universal set of self-avoiding walks. From the perspective of enumeration performance, we conclude that the Domb-Joyce model is the better of the two. The reason for the performance difference is partly explained by the existence of the first-order phase transition of the Gō model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.