Abstract
This paper presents an indoor person localization and tracking system that uses multiple smart cameras equipped with artificial intelligence (AI) accelerators serving as edge-computing nodes. Our main contributions are as follows: (a) the development of a new multicamera tracking system for indoor scenarios; (b) the release of a multitarget multicamera tracking dataset; and (c) the development of an annotation mechanism based on waypoints. The system can simultaneously track several individuals while preserving their privacy and anonymity, because no images or sensitive data are transmitted outside the edge nodes. Only the position and appearance of each person were transmitted to the central server. In addition, a multitarget multicamera tracking dataset was released. The dataset contains recordings from five cameras in an indoor scenario and is annotated with the real-world coordinates of individuals. Ground-truth annotations were semiautomatically generated using a mechanism in which people equipped with mobile phones followed specific paths with predefined waypoints. Software related to the ground-truth annotation mechanism has also been released as open source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.