Abstract

We report the demonstration of multilevel operation using Cu/Cu-GeTe/W nonvolatile resistive memory devices for enhanced storage density. We incorporated Cu atoms into GeTe solid-electrolyte switching layers in Cu/Cu-GeTe/W nonvolatile resistive memory devices by applying a bias to the sample holder during a radio-frequency sputtering process. By analyzing the dependence of the device current (resistance) on both the pulse input voltage magnitude and width, we achieved four distinct resistance levels that correspond to the 2-bit operation of a single memory cell. Moreover, a model was suggested and discussed to account for the observed multibit operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.