Abstract

Mining is a major economic activity in many developing countries. However, it disturbs the environment, producing enormous quantities of waste, known as mine tailings, which can have deleterious environmental impact, due to their high heavy metals (HM) content. Often, foundation species that establish on mine tailings are good candidates to study the effects of HM bioaccumulation at different levels of biological organization. Prosopis laevigata is considered a HM hyperaccumulator which presents attributes of a foundation species (FS) and establishes naturally on mine tailings. We evaluated the bioaccumulation of Cu, Pb, and Zn in P. laevigata foliar tissue, the leaf micro- and macro-morphological characters, DNA damage, and population genetic effects. In total, 80 P. laevigata individuals (20/site) belonging to four populations: The individuals from both sites (exposed and reference) bioaccumulated HMs (Pb > Cu > Zn). However, in the exposed individuals, Pb and Cu bioaccumulation was significantly higher. Also, a significant effect of macro- and micro-morphological characters was registered, showing significantly lower values in individuals from the exposed sites. In addition, we found significant differences in genotoxic damage in P. laevigata individuals, between the exposed and reference sites. In contrast, for the micro-morphological characters, none of the analyzed metals had any influence. P. laevigata did not show significant differences in the genetic structure and diversity between exposed and reference populations. However, four haplotypes and four private alleles were found in the exposed populations. Since P. laevigata is a species that establishes naturally in polluted sites and bioaccumulates HM in its foliar tissues, the resulting genetic, individual and population effects have not been severe enough to show detrimental effects; hence, P. laevigata can be a useful tool in phytoremediation strategies for soils polluted with Pb and Cu, maintaining its important ecological functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call