Abstract
Mining industry generates large volumes of waste known as mine tailings, which contain heavy metals (HMs) that generate a risk to environmental health. Thus, remediation of HM pollution requires attention. In this study, HM bioaccumulation, genotoxic damage, and morphological and physiological changes in the tree species Prosopis laevigata were evaluated in order to assess its potential for remediation of mine tailings. P. laevigata plants were established in two treatments (reference substrate and tailing substrate) under greenhouse conditions. Every 2months, six individuals were selected per treatment for 1year. From each individual, macromorphological (height, stem diameter, and number of leaves), micromorphological (stomatal coverage and stomatal index), and physiological parameters (chlorophyll content) were evaluated, as well as the concentration of Pb, Cu, Cd, Cr, Fe, and Zn in root and foliar tissue. Genetic damage was assessed by the comet assay in foliar tissue. These parameters were evaluated in adult individuals established in mine tailings. Roots bioaccumulated significantly more HM compared to foliar tissue. However, the bioaccumulation pattern in both tissues was Fe > Pb > Zn > Cu. The plants in tailing substrate reduced significantly the morphological and physiological characters throughout the experiment. Only the bioaccumulation of Pb affected significantly the levels of genetic damage and the number of leaves, while Zn reduced plant height. The percentage of plants that have translocation factor values greater than 1 are Cu (92.9) > Fe (85.7) > Pb (75.0) > Zn (64.3). P. laevigata has potential to phytoremediate environments contaminated with metals, due to its dominance and establishment in abandoned mine tailings, and its ability to bioaccumulate HM unaffecting plant development, as well as their high levels of HM translocation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.