Abstract

This letter analyzes different approaches for polarimetric optimization of multibaseline (MB) interferometric coherences. Two general methods are developed to simultaneously optimize coherences for more than two data sets. The first method provides every data set with a distinct dominant scattering mechanism (SM). The second optimization method is constrained to use equal SMs at all data sets. As the experimental results indicate, MB coherence optimization does improve the accuracy in the estimation of dominant SMs and the associated interferometric phases. Both methods are evaluated on real data acquired by the German Aerospace Agency (DLR)'s enhanced synthetic aperture radar sensor (ESAR) at L-band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.