Abstract

We study the dynamics of charge-transfer insulators after a photo-excitation using the three-band Emery model which is relevant for the description of cuprate superconductors. We provide a detailed derivation of the nonequilibrium extension of the multi-band GW+EDMFT formalism and the corresponding downfolding procedure. The Peierls construction of the electron-light coupling is generalized to the multi-band case resulting in a gauge invariant combination of the Peierls intra-band acceleration and dipolar intra-band transitions. We apply the formalism to the study of momentum-dependent (inverse) photo-emission spectra and optical conductivities. The time-resolved spectral function shows a strong renormalization of the charge-transfer gap and a substantial broadening of some of the bands. While the upper Hubbard band exhibits a momentum-dependent broadening, an almost rigid band shift is observed for the ligand bands. The inverse photo-emission spectrum reveals that the inclusion of the non-local and inter-band charge fluctuations lead to a very fast relaxation of holes into the lower Hubbard band. Consistent with the changes in the spectral function, the optical conductivity shows a renormalization of the charge-transfer gap, which is proportional to the photo-doping. The details of the photo-induced changes strongly depend on the dipolar matrix elements, which calls for an ab-initio determination of these parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call