Abstract

A three-dimensional crack propagation simulation of a hollow cylinder undergoing coupled traction and torsion loading conditions is performed by the Dual Boundary Element Method (DBEM). The maximum tension load and torque are equal to 40 kN and 250 Nm respectively. Specimens, made of Al alloys B95AT and D16T, have been experimentally tested with in-phase constant amplitude loads. The Stress Intensity Factors (SIFs) along the front of an initial part through crack, initiated from the external surface of the hollow cylinder, are calculated by the J-integral approach. The crack path is evaluated by using the Minimum Strain Energy Density (MSED) criterion whereas the Paris’ law, calibrated for the material under analysis, is used to calculate crack growth rates. A cross comparison between DBEM and experimental results is presented, showing a good agreement in terms of crack growth rates and paths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call