Abstract

The popularity of biometrics and its widespread use introduces privacy risks. To mitigate these risks, solutions such as the helper-data system, fuzzy vault, fuzzy extractors, and cancelable biometrics were introduced, also known as the field of template protection. In parallel to these developments, fusion of multiple sources of biometric information have shown to improve the verification performance of the biometric system. In this work we analyze fusion of the protected template from two 3D recognition algorithms (multi-algorithm fusion) at feature-, score-, and decision-level. We show that fusion can be applied at the known fusion-levels with the template protection technique known as the Helper-Data System. We also illustrate the required changes of the helper-data system and its corresponding limitations. Furthermore, our experimental results, based on 3D face range images of the FRGC v2 dataset, show that indeed fusion improves the verification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.