Abstract

In recent years the protection of biometric data has gained increased interest from the scientific community. Methods such as the helper data system, fuzzy extractors, fuzzy vault and cancellable biometrics have been proposed for protecting biometric data. Most of these methods use cryptographic primitives and require a binary representation from the real-valued biometric data. Hence, the similarity of biometric samples is measured in terms of the Hamming distance between the binary vector obtained at the enrolment and verification phase. The number of errors depends on the expected error probability Pe of each bit between two biometric samples of the same subject. In this paper we introduce a framework for analytically estimating Pe under the assumption that the within-and between-class distribution can be modeled by a Gaussian distribution. We present the analytic expression of Pe as a function of the number of samples used at the enrolment (Ne) and verification (Nv) phases. The analytic expressions are validated using the FRGC v2 and FVC2000 biometric databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.