Abstract
Industrial distributed networked control systems use different communication networks to exchange different critical levels of information. Real-time control, fault diagnosis (FDI) and Fault Tolerant Networked Control (FTNC) systems demand one of the more stringent data exchange in the communication networks of these networked control systems (NCS). When dealing with large-scale complex NCS, designing FTNC systems is a very difficult task due to the large number of sensors and actuators spatially distributed and network connected. To solve this issue, a FTNC platform and toolbox are presented in this paper using simple and verifiable principles coming mainly from a decentralized design based on causal modelling partitioning of the NCS and distributed computing using multi-agent systems paradigm, allowing the use of agents with well established FTC methodologies or new ones developed taking into account the NCS specificities. The multi-agent platform and toolbox for FTNC systems have been built in Matlab/Simulink environment, which is in our days the scientific benchmark for this kind of research. Although the tests have been performed with a simple case, the results are promising and this approach is expected to succeed with more complex processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.