Abstract
To enable large-scale screening of signaling molecules and drugs that regulate cellular contractility-associated mechanotransduction, we previously modified, particularly in terms of the capability of efficiently collecting big data, conventional methodologies using wrinkled substrates to determine the cellular contractility. Here, we present a new system to perform the wrinkle-based cell force assay in a multi-well plate format conformed to standardized geometric configurations and compatible with available technologies such as automated plate readers. With this highly improved throughput in terms of hardware as well as software using a deep learning-based technology, we evaluated the effect of treating cells with various types of pharmacological inhibitors on the cellular contractility. We found opposite responses of cells to the inhibitors between the contractility and collective migration activities. While similar inverse relationships between the contractility and migration have been reported in separate studies, our results here with the high-throughput screening system more broadly generalized these observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.