Abstract

For linear models, compressed sensing theory and methods enable recovery of sparse signals of interest from few measurements-in the order of the number of nonzero entries as opposed to the length of the signal of interest. Results of similar flavor have more recently emerged for bilinear models, but no results are available for multilinear models of tensor data. In this contribution, we consider compressed sensing for sparse and low-rank tensors. More specifically, we consider low-rank tensors synthesized as sums of outer products of sparse loading vectors, and a special class of linear dimensionality-reducing transformations that reduce each mode individually. We prove interesting “oracle” properties showing that it is possible to identify the uncompressed sparse loadings directly from the compressed tensor data. The proofs naturally suggest a two-step recovery process: fitting a low-rank model in compressed domain, followed by per-mode decompression. This two-step process is also appealing from a computational complexity and memory capacity point of view, especially for big tensor datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.