Abstract
We investigate a generalized framework to estimate a latent low-rank plus sparse tensor, where the low-rank tensor often captures the multi-way principal components and the sparse tensor accounts for potential model mis-specifications or heterogeneous signals that are unexplainable by the low-rank part. The framework flexibly covers both linear and generalized linear models, and can easily handle continuous or categorical variables. We propose a fast algorithm by integrating the Riemannian gradient descent and a novel gradient pruning procedure. Under suitable conditions, the algorithm converges linearly and can simultaneously estimate both the low-rank and sparse tensors. The statistical error bounds of final estimates are established in terms of the gradient of loss function. The error bounds are generally sharp under specific statistical models, for example, the sub-Gaussian robust PCA and Bernoulli tensor model. Moreover, our method achieves nontrivial error bounds for heavy-tailed tensor PCA whenever the noise has a finite 2 + ε moment. We apply our method to analyze the international trade flow dataset and the statistician hypergraph coauthorship network, both yielding new and interesting findings. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.