Abstract

Manifold learning aims to discover the low dimensional space where the input high dimensional data are embedded by preserving the geometric structure. Unfortunately, almost all the existing manifold learning methods were proposed under single view scenario, and they cannot be straightforwardly applied to multiple feature sets. Although concatenating multiple views into a single feature provides a plausible solution, it remains a question on how to better explore the independence and interdependence of different views while conducting manifold learning. In this paper, we propose a multi-view manifold learning with locality alignment (MVML-LA) framework to learn a common yet discriminative low-dimensional latent space that contain sufficient information of original inputs. Both supervised algorithm (S-MVML-LA) and unsupervised algorithm (U-MVML-LA) are developed. Experiments on benchmark real-world datasets demonstrate the superiority of our proposed S-MVML-LA and U-MVML-LA over existing state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.