Abstract
Multi-view learning is an emerging direction in machine learning which considers learning with multiple views to improve the generalization performance. Multi-view learning is also known as data fusion or data integration from multiple feature sets. Since the last survey of multi-view machine learning in early 2013, multi-view learning has made great progress and developments in recent years, and is facing new challenges. This overview first reviews theoretical underpinnings to understand the properties and behaviors of multi-view learning. Then multi-view learning methods are described in terms of three classes to offer a neat categorization and organization. For each category, representative algorithms and newly proposed algorithms are presented. The main feature of this survey is that we provide comprehensive introduction for the recent developments of multi-view learning methods on the basis of coherence with early methods. We also attempt to identify promising venues and point out some specific challenges which can hopefully promote further research in this rapidly developing field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.