Abstract
Multi-target multi-camera tracking (MTMCT) is an important application in intelligent transportation systems (ITS). The conventional works follow the tracking-by-detection scheme and use the information of the object image separately while matching the object from different cameras. As a result, the association information from the object image is lost. To utilize this information, we propose an efficient MTMCT application that builds features in the form of a graph and customizes graph similarity to match the vehicle objects from different cameras. We present algorithms for both the online scenario, where only the past images are used to match a vehicle object, and the offline scenario, where a given vehicle object is tracked with past and future images. For offline scenarios, our method achieves an IDF1-score of 0.8166 on the Cityflow dataset, which contains the actual scenes of the city from multiple street cameras. For online scenarios, our method achieves an IDF1-score of 0.75 with an FPS of 14. Our codes and datasets are available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/elituan/GraphBasedTracklet_MTMCT</uri> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.