Abstract
The multi-variable grey model based on dynamic background algorithm improves the forecasting performance of the multi-variable grey model on the precise number sequence. In order to make this model suitable for the interval sequence, the matrix form of the multi-variable grey model based on dynamic background algorithm is proposed in the paper. In the modeling process, the interval is treated as a two-dimensional column vector, the parameters of the multi-variable grey model are replaced by matrices, and the dynamic background algorithm for interval sequences is proposed. The analysis results of the matrix algorithm for the dynamic background value and the prediction formula show that the new model is essentially a way to predict one of the two bounds of an interval by combining them, reflecting the integrity and interaction between the lower and upper bounds. The interval predictions of industrial electricity consumption of Zhejiang Province, China national electricity consumption and consumer price index show that the new model can well predict the minimum and maximum values of the interval sequence and has better prediction performance compared with the method of predicting each boundary sequence separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.