Abstract

Systematically orchestrating fundamental building blocks into intricate high-dimensional molecular assemblies at molecular level is imperative for multifunctionality integration. However, this remains a formidable task in crystal engineering due to the dynamic nature of inorganic building blocks. Herein, we develop a multi-template-guided strategy to control building blocks. The coordination modes of ligands and the spatial hindrance of anionic templates are pivotal in dictating the overall structures. Flexible multi-dentate linkers selectively promote the formation of oligomeric assembly ([TeO3(Mo2O2S2)3O2(OH)(C5O2H7)3]4- {TeMo6}) into tetrahedral cages ([(TeO3)4(Mo2O2S2)12(OH)12(C9H9O4P)6]8- {Te4Mo24} and [(AsO4)4(Mo2O2S2)12(OH)12(C9H9O6)4]12- {As4Mo24}), while steric hindrance from anionic templates further assists in assembling cages into an open quadruply twisted Möbius nanobelt ([(C6H5O3P)8(Mo2O2S2)24(OH)24(C8H10O4)12]16- {P8Mo48}). Among these structures, the hydrophilic-hydrophobic hybrid cage {Te4Mo24} emerges as an exemplary molecular model for proton conduction and serves as a prototype for humidity gradient-based power generators (HGPGs). The Te4Mo24-PVDF-based HGPG (PVDF = Poly(vinylidene fluoride)) exhibits notable stability and power generation, yielding an open-circuit voltage of 0.51 V and a current density of 77.8 nA cm-2 at room temperature and 90% relative humidity (RH). Further insights into the interactions between water molecules and microscale molecules within the generator are achieved through molecular dynamics simulations. This endeavor unveils a universal strategy for synthesizing multifunctional integration molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.