Abstract

Exploiting the spatial resolution of scanning probes presents an attractive approach for novel data storage technologies in particular for large-scale data repositories because of their inherent potential for high storage density. We show that multi-Tbit/in(2) density can be achieved by means of thermomechanically embossing the information as indentation marks into a polymer film. The data density is determined by the nonlinear interaction between closely spaced indents and the fundamental scaling relations governing the shape and size of the indents. We find that cooperative effects in polymers give rise to a minimum indentation radius on the order of the correlation length of the cooperatively rearranged region even if formed by an infinitely sharp indenter. Thus, cooperativity coupled to alpha-transitions in polymers is evinced in a real space geometrical experiment. Furthermore, we predict that indentation marks cannot be made smaller than 5 nm in diameter, which limits the feature resolution for embossing technologies in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.