Abstract

The widespread use of encrypted traffic poses challenges to network management and network security. Traditional machine learning-based methods for encrypted traffic classification no longer meet the demands of management and security. The application of deep learning technology in encrypted traffic classification significantly improves the accuracy of models. This study focuses primarily on encrypted traffic classification in the fields of network analysis and network security. To address the shortcomings of existing deep learning-based encrypted traffic classification methods in terms of computational memory consumption and interpretability, we introduce a Parameter-Efficient Fine-Tuning method for efficiently tuning the parameters of an encrypted traffic classification model. Experimentation is conducted on various classification scenarios, including Tor traffic service classification and malicious traffic classification, using multiple public datasets. Fair comparisons are made with state-of-the-art deep learning model architectures. The results indicate that the proposed method significantly reduces the scale of fine-tuning parameters and computational resource usage while achieving performance comparable to that of the existing best models. Furthermore, we interpret the learning mechanism of encrypted traffic representation in the pre-training model by analyzing the parameters and structure of the model. This comparison validates the hypothesis that the model exhibits hierarchical structure, clear organization, and distinct features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call