Abstract

PurposeTo assess the feasibility and clinical value of synthetic diffusion kurtosis imaging (DKI) generated from diffusion weighted imaging (DWI) through multi-task reconstruction network (MTR-Net) for tumor response prediction in patients with locally advanced rectal cancer (LARC). MethodsIn this retrospective study, 120 eligible patients with LARC were enrolled and randomly divided into training and testing datasets with a 7:3 ratio. The MTR-Net was developed for reconstructing Dapp and Kapp images from apparent diffusion coefficient (ADC) images. Tumor regions were manually segmented on both true and synthetic DKI images. The synthetic image quality and manual segmentation agreement were quantitatively assessed. The support vector machine (SVM) classifier was used to construct radiomics models based on the true and synthetic DKI images for pathological complete response (pCR) prediction. The prediction performance for the models was evaluated by the receiver operating characteristic (ROC) curve analysis. ResultsThe mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) for tumor regions were 0.212, 24.278, and 0.853, respectively, for the synthetic Dapp images and 0.516, 24.883, and 0.804, respectively, for the synthetic Kapp images. The Dice similarity coefficient (DSC), positive predictive value (PPV), sensitivity (SEN), and Hausdorff distance (HD) for the manually segmented tumor regions were 0.786, 0.844, 0.755, and 0.582, respectively. For predicting pCR, the true and synthetic DKI-based radiomics models achieved area under the curve (AUC) values of 0.825 and 0.807 in the testing datasets, respectively. ConclusionsGenerating synthetic DKI images from DWI images using MTR-Net is feasible, and the efficiency of synthetic DKI images in predicting pCR is comparable to that of true DKI images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call