Abstract
The objective of this study is to propose MD-VAE: a multi-task disentangled variational autoencoders (VAE) for exploring characteristics of latent representations (LR) and exploiting LR for diverse tasks including glucose forecasting, event detection, and temporal clustering. We applied MD-VAE to one virtual continuous glucose monitoring (CGM) data from an FDA-approved Type 1 Diabetes Mellitus simulator (T1DMS) and one publicly available CGM data of real patients for glucose dynamics of Type 1 Diabetes Mellitus. LR captured meaningful information to be exploited for diverse tasks, and was able to differentiate characteristics of sequences with clinical parameters. LR and generative models have received relatively little attention for analyzing CGM data so far. However, as proposed in our study, VAE has the potential to integrate not only current but also future information on glucose dynamics and unexpected events including interactions of devices in the data-driven manner. We expect that our model can provide complementary views on the analysis of CGM data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.