Abstract

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease. Providing trustworthy AD progression predictions for at-risk individuals contributes to early identification of AD patients and holds significant value in discovering effective treatments and empowering the patient in taking proactive care. Recently, although numerous disease progression models based on machine learning have emerged, they often focus solely on enhancing predictive accuracy and ignore the measurement of result reliability. Consequently, this oversight adversely affects the recognition and acceptance of these models in clinical applications. To address these problems, we propose a multi-task evidential sequence learning model for the trustworthy prediction of disease progression. Specifically, we incorporate evidential deep learning into the multi-task learning framework based on recurrent neural networks. We simultaneously perform AD clinical diagnosis and cognitive score predictions while quantifying the uncertainty of each prediction without incurring additional computational costs by leveraging the Dirichlet and Normal-Inverse-Gamma distributions. Moreover, an adaptive weighting scheme is introduced to automatically balance between tasks for more effective training. Finally, experimental results on the TADPOLE dataset validate that our model not only has a comparable predictive performance to similar models but also offers reliable quantification of prediction uncertainties, providing a crucial supplementary factor for risk-sensitive AD progression prediction applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call