Abstract
Inspired by ant's stochastic behavior in search for multiple food sources, we propose a cooperating multi-task ant system for tracking multiple synthetic objects as well as multiple real cells in a bio-medical field. In our framework, each ant colony is assumed and assigned to fulfill a given task to estimate the state of an object. Furthermore, two ant levels are used, i.e., ant individual level and ant cooperation level. In the ant individual level, ants within one colony perform independently, and the motion of each individual is probabilistically determined by both its intended motion modes and the likelihood function score. In the ant cooperation level, each ant adjusts individual state within its influence region according to heuristic information of all other ants within the same colony, while the global best template at current iteration is found among all ant colonies and utilized to update ant model probability, influence region, and probability of fulfilling task. Our algorithm is validated by comparing it to the-state-of-art algorithms, and specifically the improved tracking performance in terms of false negative rate (up to 10.0%) and false negative rate (up to 2.1%) is achieved based on the studied three real cell image sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.