Abstract

Landslides fall under natural, unpredictable and most distractive disasters. Hence, early warning systems of such disasters can alert people and save lives. Some of the recent early warning models make use of Internet of Things to monitor the environmental parameters to predict the disasters. Some other models use machine learning techniques (MLT) to analyse rainfall data along with some internal parameters to predict these hazards. The prediction capability of the existing models and systems are limited in terms of their accuracy. In this research paper, two prediction modelling approaches, namely random forest (RF) and logistic regression (LR), are proposed. These approaches use rainfall datasets as well as various other internal and external parameters for landslide prediction and hence improve the accuracy. Moreover, the prediction performance of these approaches is further improved using antecedent cumulative rainfall data. These models are evaluated using the receiver operating characteristics, area under the curve (ROC-AUC) and false negative rate (FNR) to measure the landslide cases that were not reported. When antecedent rainfall data is included in the prediction, both models (RF and LR) performed better with an AUC of 0.995 and 0.997, respectively. The results proved that there is a good correlation between antecedent precipitation and landslide occurrence rather than between one-day rainfall and landslide occurrence. In terms of incorrect predictions, RF and LR improved FNR to 10.58% and 5.77% respectively. It is also noted that among the various internal factors used for prediction, slope angle has the highest impact than other factors. Comparing both the models, LR model’s performance is better in terms of FNR and it could be preferred for landslide prediction and early warning. LR model’s incorrect prediction rate FNR = 9.61% without including antecedent precipitation data and 3.84% including antecedent precipitation data.

Highlights

  • Landslides and floods are the common natural disasters that strike the northwestern provinces of Rwanda due to its topographical, geological features and climatic profile [1,2]

  • The main purpose of this research is to improve the performance of the prediction models by including the antecedent rainfall data among other parameters used in the previous studies such as daily rainfall, hill slope angle, soil type, soil depth, and land cover

  • This study is aimed at: (1) to analyze the correlation between rainfall historical data and other topographical and geological factors impacting landslide occurrence in Rwanda and (2) propose a machine learning model for the prediction of this disaster which can be used for early warning

Read more

Summary

Introduction

Landslides and floods are the common natural disasters that strike the northwestern provinces of Rwanda due to its topographical, geological features and climatic profile [1,2]. According to The National Risk Atlas of Rwanda report published by the Ministry in Charge of Emergency Management (MINEMA), 42% of areas are classified as moderate to very high susceptible areas to landslides [3]. Every year, during the rainfall period, landslides affect many people in mountainous regions. These disasters led to the loss of lives and left many homeless and without a livelihood. Since the establishment of an institution in charge of disaster management (MINEMA) in 2010, systematic

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call