Abstract
This article presents a topology optimization of the motor mounting bracket in a 2-degree-of-freedom (2 DoF) vehicle simulator that is enhanced by the driving scenari-os. Firstly, a 14 DoF passenger reference application model is determined in the Sim-ulink environment. Then, common driving scenarios (Constant Radius, Double Lane Change, Fishhook, Increasing Steer, Sine with Dwell and Swept Sine) are run on 14 DoF vehicle models to test the dynamic performance of the vehicle. During the anal-ysis, accelerations in the XYZ axes are logged, and the minimum and maximum ac-celeration values on each axis are grouped separately for each driving scenario. Next, the concept design of 2 DoF vehicle simulators is created. The obtained accelerations from the driving scenarios are then run on 2 DoF vehicle simulator in the Solidworks simulation environment, and stress and deformation on the 2 DoF vehicle simulator are analyzed. During this analysis, linear actuator and axis forces are calculated ac-cording to the reaction forces on the vehicle simulator. Under the determined axial forces, the brackets are subjected to topology optimization. The obtained generative design of the bracket is reshaped by post-processing for sustainable production. The shape-optimized bracket is run again on the 2 DoF vehicle simulator with the ob-tained acceleration values from the driving scenarios, and the study is completed by performing stress and deformation analysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Automotive Science And Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.