Abstract

Grey wolf optimizer (GWO) is a highly valued heuristic algorithm in many fields. However, for some complex problems, especially high‐dimensional and multimodal problems, the basic algorithm has limited computational power and cannot get a satisfactory answer. In order to find a better solution, an improved algorithm based on GWO is proposed herein. Gaussian barebone, random selection and chaotic game mechanisms are introduced into the GWO algorithm to enhance the global search ability. The GWO enhanced by three mechanisms is called CBRGWO. To verify the performance of CBRGWO, using IEEE CEC 2017 as a test function, CBRGWO is compared to five GWO variants, five basic algorithms, six advanced algorithms, and four champion algorithms. CBRGWO is evaluated using the Friedman test and Wilcoxon signed‐rank test. Then, the stability of CBRGWO is analyzed. To verify that CBRGWO is still effective in practical application, CBRGWO is applied to five engineering problems and a water quality prediction problem. The experimental findings indicate that CBRGWO maintains excellent optimization ability in practical engineering problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.