Abstract
• A nonlinear strategy of control parameter and a modified position-updating equation are presented. • The proposed algorithm is used to solve large-scale global optimization problems. • Only 15,000 number of Function evaluations are required to solve all dimensional functions. • It is a low computational cost optimization technique. • It converges fast as compared to other population-based optimization algorithms. Grey wolf optimizer algorithm was recently presented as a new heuristic search algorithm with satisfactory results in real-valued and binary encoded optimization problems that are categorized in swarm intelligence optimization techniques. This algorithm is more effective than some conventional population-based algorithms, such as particle swarm optimization, differential evolution and gravitational search algorithm. Some grey wolf optimizer variants were developed by researchers to improve the performance of the basic grey wolf optimizer algorithm. Inspired by particle swarm optimization algorithm, this study investigates the performance of a new algorithm called Inspired grey wolf optimizer which extends the original grey wolf optimizer by adding two features, namely, a nonlinear adjustment strategy of the control parameter, and a modified position-updating equation based on the personal historical best position and the global best position. Experiments are performed on four classical high-dimensional benchmark functions, four test functions proposed in the IEEE Congress on Evolutionary Computation 2005 special session, three well-known engineering design problems, and one real-world problem. The results show that the proposed algorithm can find more accurate solutions and has higher convergence rate and less number of fitness function evaluations than the other compared techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.