Abstract

Lipid nanoparticles hold great potential as an effective non-viral vector for nucleic acid-based gene therapy. Plasmid DNA delivery can result in extended transgene expression compared to mRNA-based technologies, yet there is a lack of systematic investigation into lipid nanoparticle compositions for plasmid DNA delivery. Here, we report a multi-step screening platform to identify optimized plasmid DNA lipid nanoparticles for liver-targeted transgene expression. To achieve this, we analyze the role of different helper lipids and component ratios in plasmid DNA lipid nanoparticle-mediated gene delivery in vitro and in vivo. Compared to mRNA LNPs and in vivo-jetPEI/DNA nanoparticles, the identified plasmid DNA lipid nanoparticles successfully deliver transgenes and mediate prolonged expression in the liver following intravenous administration in mice. By addressing different physiological barriers in a stepwise manner, this screening platform can efficiently down select effective lipid nanoparticle candidates from a lipid nanoparticle library of over 1000 formulations. In addition, we substantially extend the duration of plasmid DNA nanoparticle-mediated transgene expression using a DNA/siRNA co-delivery approach that targets transcription factors regulating inflammatory response pathways. This lipid nanoparticle-based co-delivery strategy further highlights the unique advantages of an extended transgene expression profile using plasmid DNA delivery and offers new opportunities for DNA-based gene medicine applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.