Abstract

This paper establishes a method for solving partial differential equations using a multi-step physics-informed deep operator neural network. The network is trained by embedding physics-informed constraints. Different from traditional neural networks for solving partial differential equations, the proposed method uses a deep neural operator network to indirectly construct the mapping relationship between the variable functions and solution functions. This approach makes full use of the hidden information between the variable functions and independent variables. The process whereby the model captures incredibly complex and highly nonlinear relationships is simplified, thereby making network learning easier and enhancing the extraction of information about the independent variables in partial differential systems. In terms of solving partial differential equations, we verify that the multi-step physics-informed deep operator neural network markedly improves the solution accuracy compared with a traditional physics-informed deep neural operator network, especially when the problem involves complex physical phenomena with large gradient changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.