Abstract
In this paper, we propose and study a multi-step iterative algorithm that comprises of a finite family of asymptotically \begin{document}$ k_i $\end{document} -strictly pseudocontractive mappings with respect to \begin{document}$ p, $\end{document} and a \begin{document}$ p $\end{document} -resolvent operator associated with a proper convex and lower semicontinuous function in a \begin{document}$ p $\end{document} -uniformly convex metric space. Also, we establish the \begin{document}$ \Delta $\end{document} -convergence of the proposed algorithm to a common fixed point of finite family of asymptotically \begin{document}$ k_i $\end{document} -strictly pseudocontractive mappings which is also a minimizer of a proper convex and lower semicontinuous function. Furthermore, nontrivial numerical examples of our algorithm are given to show its applicability. Our results complement a host of recent results in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial & Management Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.