Abstract

This paper examines multi-step barrier options with an arbitrary payoff function using extended static hedging methods. Although there have been studies using extended reflection principles to obtain joint distribution functions for barrier options with complex barrier conditions, and static hedging methods to evaluate limited barrier options with well-known payoff functions, we obtain an explicit expression of barrier option price which has a general payoff function under the Black–Scholes framework assumption. The explicit multi-step barrier options prices we discuss in this paper are not only useful in that they can handle different levels and time steps barrier and all types of payoff functions, but can also extend to pricing of barrier options under finite discrete jump–diffusion models with a simple barrier. In the last part, we supplement the theory with numerical examples of various multi-step barrier options under the Black–Scholes or discrete jump–diffusion model for comparison purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.