Abstract

The low-voltage droop of high-voltage pulses is required to provide stable pulsed electric fields in many applications. Increasing the capacitance of energy storage capacitors increases both the size and the cost of the system. In this paper, four compensation stages based on the resonant circuit have been inserted into a 16-stage solid-state Marx generator to compensate for the voltage droop in different conditions. The nearly linear part of the sinusoidal voltage is precisely added to the load during discharging as compensation, and the rectangular pulsed voltage with little droop can be realized. Different numbers of compensation stages and different resonant inductances can compensate the droop to different levels, which means the compensation effect is also adjustable. Moreover, these compensation stages can operate as common stages in Marx generators as long as we open-circuit the resonant circuits. Since the capacitors in resonant compensation stages are also charged in parallel with capacitors in common stages, no auxiliary power supply is required. Simulating and experimental results show that the droop of a 9kV pulse can be ideally compensated over a 500Ω resistive load at various pulse widths. The pulse width should be shorter than the length of the nearly linear part of the sinusoidal voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call