Abstract

The interaction between enzyme-like pyrroloquinoline quinone (PQQ) and calf-thymus DNA (CT-DNA) has been investigated by means of multi-spectroscopic (UV-Vis, fluorescence and circular dichroism), isothermal titration calorimetric (ITC), viscometry and molecular docking and metadynamics simulation techniques. Absorption spectral data suggested the formation of a PQQ/CT-DNA complex, which quenched the fluorescence of PQQ via the dynamic quenching process. The results of CD spectral studies coupled with viscosity measurements, competitive binding assays with Hoechst 33258 and ethidium bromide (EB), KI quenching experiments, gel electrophoresis and DNA melting studies indicated groove binding mode of interaction of PQQ with CT-DNA. ITC experiment revealed that the complex formation is a spontaneous process (ΔGo < 0) with a binding constant of 1.05 × 104 M−1. The observed ΔHo < 0 and ΔSo < 0 pointed out that the complex is stabilized by van der Waals forces along with H-bonding interactions. The outcomes of molecular docking and simulation studies confirmed the binding of PQQ with DNA. The free energy surface (FES) analysis pointed out the existence of an equilibrium between partial intercalation and groove binding modes, which is in good agreement with the competitive binding assays. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.