Abstract

For the realization of low-power consumption brain-inspired neuromorphic computing devices which mimic the biological neuronal information processing methodology, the development of photonic transistors capable of synaptic behaviors and neuronal computation have attracted lots of interests. Here, metal-chalcogenide (MC)/metal-oxide (MO) heterogeneous photonic neuro-transistors capable of multi-spectrum triggered synaptic responses and corresponding neuronal computation were developed for an intelligent and energy efficient neuromorphic device. The photonic transistor architecture including a solution-processed broadband photo-active heterogeneous channel and electronic modulatory terminal enable to establish power-saved multi-level writing/reading processing. The multi-spectral gate-triggerings and their synaptic responses were emulated via the broadband absorbing MC/MO heterogeneous semiconducting structure and its defective hetero-interface, which can be fine-tuned by varying photo-spectrum of applied spikes and controlling of interfacial traps in-between, respectively. More importantly, the multi-spectrum triggered heterogeneous photonic neuro-transistors can facilitate wider dynamic and more intelligent neuronal computation such as multi-level dendritic summation and fire behaviors, logic-computation, and associated learning beyond conventional simple synaptic-level photonic devices. The results reported here argue that the multi-spectral activated heterogeneous photonic neuro-transistor outperforms current state-of-neuro-devices, provide a facile and generic route to achieve high-density and energy efficient neuromorphic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.