Abstract

Study regionThe Poyang Lake, which is located on the south bank of the middle-lower Yangtze River basin. The lake is the largest freshwater lake in China, and also a typical floodplain lake in the world. Study focusThe spatiotemporal heterogeneity of inundation dynamics of large floodplain lake system has not been paid enough attention. Based on the reconstructed high spatial and temporal resolution inundation dataset using the image fusion model and multi-source remote sensing data, this study systematically analyzed the spatiotemporal heterogeneity of inundation dynamics in the Poyang Lake- floodplain system. New hydrological insights for the regionIt is found that within the same floodplain lake, the inundated area and inundation frequency in different regions of the lake (the main lake region and the adjacent floodplain region) can have asynchronous intra-annual fluctuation and opposite inter-annual change trend. This is highly related to the hydrological complexity of the lake: the relative impacts of catchment inflow and the Yangtze River varies in different regions across the lake. The stage-area relationship at the central station along the flow direction of the lake has the highest linear correlation, which might provide more accurate estimates of lake surface/volume. In addition, this study highlights the importance of reconstructed high spatial-temporal resolution of remote sensing data for the accurate assessment of inundation dynamics in floodplain lakes. All the results enrich the understanding of complex hydrological regime of large floodplain lakes and are valuable for the practice of water resources management and ecological conservation in such lakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.